Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
BMC Genom Data ; 25(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438998

RESUMO

OBJECTIVES: Brasenia is a monotypic genus in the family of Cabombaceae. The only species, B. schreberi, is a macrophyte distributed worldwide. Because it requires good water quality, it is endangered in China and other countries due to the deterioration of aquatic habitats. The young leaves and stems of B. schreberi are covered by thick mucilage, which has high medical value. As an allelopathic aquatic plant, it can also be used in the management of aquatic weeds. Here, we present its assembled and annotated genome to help shed light on medial and allelopathic substrates and facilitate their conservation. DATA DESCRIPTION: Genomic DNA and RNA extracted from B. schreberi leaf tissues were used for whole genome and RNA sequencing using a Nanopore and/or MGI sequencer. The assembly was 1,055,148,839 bp in length, with 92 contigs and an N50 of 22,379,495 bp. The repetitive elements in the assembly were 555,442,205 bp. A completeness assessment of the assembly with BUSCO and compleasm indicated 88.4 and 90.9% completeness in the Eudicots database and 95.4 and 96.6% completeness in the Embryphyta database. Gene annotation revealed 67,747 genes that coded for 73,344 proteins.


Assuntos
Plantas Daninhas , Sementes , Alelopatia , China , Bases de Dados Factuais
2.
BMC Genomics ; 25(1): 203, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389079

RESUMO

BACKGROUND: Firmiana danxiaensis is a critically endangered and ecologically important tree currently only found in four locations in Danxia or Karst habitats in northern Guangdong Province, China. The specialized habitat preference makes it an ideal model species for study of adaptive evolution. Meanwhile, the phylogenetic relationships of F. danxiaensis in four locations under two landforms are unclear. Therefore, we sequenced its complete chloroplast (cp.) genomes and conducted comprehensive interspecific and intrageneric plastome studies. RESULTS: The F. danxiaensis plastomes in four locations showed a typical quadripartite and circular structure that ranged from 160,832 to 161,206 bp in size, with 112 unique genes encoded. Comparative genomics showed that the plastomes of F. danxiaensis were relatively conserved with high similarity of genome organization, gene number, GC content and SSRs. While the genomes revealed higher biased codon preferences in Karst habitat than those in Danxia habitats. Eighteen and 11 divergent hotpots were identified at interspecific and intrageneric levels for species identification and further phylogenetic studies. Seven genes (clpP, accD, ccsA, ndhH, rpl20, rpoC2, and rps4) were under positive selection and may be related to adaptation. Phylogenetic analysis revealed that F. danxiaensis is sister to F. major and F. simplex. However, the interspecific relationships are not consistent with the habitat types. CONCLUSIONS: The characteristics and interspecific relationship of F. danxiaensis plastomes provide new insights into further integration of geographical factors, environmental factors, and genetic variations on the genomic study of F. danxiaensis. Together, our study will contribute to the study of species identification, population genetics, and conservation biology of F. danxiaensis.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Genômica , Sequência de Bases , Genética Populacional
3.
Hum Cell ; 37(2): 531-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253956

RESUMO

Mixed-type ampullary cancer is a distinct subtype of ampullary cancer that manifests a merging of the biological characteristics of both intestinal and pancreaticobiliary subtypes. The absence of established cell lines specific to this subtype has resulted in a concomitant scarcity of research on its tumorigenic mechanisms and the development of novel therapeutic modalities. The present study achieved the successful establishment of a novel mixed-type ampullary cancer cell line, designated DPC-X4 through primary culture techniques. Subsequent analyses pertaining to phenotypic characteristics, molecular profiling, biomarker identification, and histological features validated the DPC-X4 cell line as a potent model for delineating the pathogenesis of mixed-type ampullary cancer and facilitating the development of new pharmacological agents. This newly established cell line was subjected to continuous cultivation for 1 year, with stable passaging for over 50 generations. Notably, the DPC-X4 cell line manifested typical morphological features associated with epithelial tumors. Furthermore, the population doubling time for the DPC-X4 cell line was determined at 70 h. Short tandem repeat (STR) analysis confirmed that the DPC-X4 cell line exhibited a high genetic concordance with the primary tumor from the patient. Karyotypic profiling indicated an abnormal sub-triploid karyotype, with representative karyotypes of 57, XXY inv (9), 14p + , 15p + , der (17), + mar. The DPC-X4 cell line demonstrated a high capacity for efficient organoid formation under suspension culture conditions. In addition, the subcutaneous inoculation of DPC-X4 cells into NXG mice led to the formation of xenografted tumors. The results of drug sensitivity testing indicated that DPC-X4 cells were sensitive to paclitaxel and resistant to oxaliplatin, 5-fluorouracil, and gemcitabine. Immunohistochemistry revealed positive expression of CK7, CK19, and CK20 in DPC-X4 cells, while CDX2 demonstrated negative expression. In addition, positive expression of E-cadherin and vimentin was identified in DPC-X4 cells, with a proliferation index indicated by Ki-67 at 70%. The findings of our study establish DPC-X4 as a novel mixed-type ampullary cancer cell line, which can serve as a potential experimental model for exploring the pathogenesis of ampullary cancer and the development of therapeutic drugs.


Assuntos
Ampola Hepatopancreática , Neoplasias do Ducto Colédoco , Neoplasias , Humanos , Animais , Camundongos , Biomarcadores Tumorais/metabolismo , Ampola Hepatopancreática/química , Ampola Hepatopancreática/metabolismo , Ampola Hepatopancreática/patologia , Neoplasias do Ducto Colédoco/genética , Neoplasias do Ducto Colédoco/metabolismo , Neoplasias do Ducto Colédoco/patologia , Neoplasias/patologia , Linhagem Celular , Linhagem Celular Tumoral
4.
J Colloid Interface Sci ; 656: 587-596, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996256

RESUMO

Owing to their small fiber diameter (10-15 µm), silk fabrics are always thin (32-90 g m-2). Therefore, construction of the Janus surfaces of silk fabrics that possess excellent multifunctionality remains a formidable challenge. Herein, first, silk fabrics were grafted using glycidyltrimethylammonium chloride to form a superhydrophilic surface (G-side). Then, a unilateral hydrophobic surface (O-side) was readily fabricated by mist coating octadecyltrichlorosilane-functionalized SiO2 nanoparticles (NPs) to produce hierarchical surface textures. To prevent NP penetration from the G-side to the O-side, a "fireproof isolation" method was employed. Consequently, Janus silk fabrics (JanSFs) bearing asymmetric wettability were prepared, and their wetting gradient could be conveniently regulated. With the mist time ranging from 4 to 7 min, the unidirectional transport index and efficiency of the unidirectional water transport increased and decreased by 13.2 and 10.4 times, respectively. Sweat could be effectively drained away from human skin to ensure that the skin was dry and comfortable. Compared with the surface temperature of the raw fabric, the raw fabric of JanSFs increased by 2.7 °C. Furthermore, the breathability of JanSF was negligibly affected, and the outer O-side of the JanSF showed substantial antibacterial activity. This study is important for designing JanSFs that exhibit unidirectional water transport.


Assuntos
Anti-Infecciosos , Dióxido de Silício , Humanos , Têxteis , Seda/química , Água/química
5.
DNA Res ; 31(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147541

RESUMO

Euryodendron excelsum is in a monotypic genus Euryodendron, endemic to China. It has intermediate morphisms in the Pentaphylacaceae or Theaceae families, which make it distinct. Due to anthropogenic disturbance, E. excelsum is currently found in very restricted and fragmented areas with extremely small populations. Although much research and effort has been applied towards its conservation, its long-term survival mechanisms and evolutionary history remain elusive, especially from a genomic aspect. Therefore, using a combination of long/short whole genome sequencing, RNA sequencing reads, and Hi-C data, we assembled and annotated a high-quality genome for E. excelsum. The genome assembly of E. excelsum comprised 1,059,895,887 bp with 99.66% anchored into 23 pseudo-chromosomes and a 99.0% BUSCO completeness. Comparative genomic analysis revealed the expansion of terpenoid and flavonoid secondary metabolite genes, and displayed a tandem and/or proximal duplication framework of these genes. E. excelsum also displayed genes associated with growth, development, and defence adaptation from whole genome duplication. Demographic analysis indicated that its fluctuations in population size and its recent population decline were related to cold climate changes. The E. excelsum genome assembly provides a highly valuable resource for evolutionary and ecological research in the future, aiding its conservation, management, and restoration.


Assuntos
Genoma , Genômica , Humanos , Animais , Genômica/métodos , Cromossomos , Sequência de Bases , Filogenia , Demografia
6.
J Cell Mol Med ; 28(3): e18089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146239

RESUMO

Endothelial dysfunction is an independent risk factor for stroke. The dysfunction of endothelial cells (EC) is closely concerned with EC senescence. Gastrodin (GAS) is an organic compound extracted from the dried root mass of the Orchidaceae plant Gastrodiae gastrodiae. It is used clinically to treat diseases such as vertebrobasilar insufficiency, vestibular neuronitis and vertigo. In the present study, we used hydrogen peroxide (H2 O2 )-induced human umbilical vein endothelial cells (HUVECs) to establish an in vitro EC senescence model and to investigate the role and mechanism of GAS in EC senescence. It's found that H2 O2 -treated HUVECs increased the proportion of senescence-associated ß-galactosidase (SA ß-gal) positive cells and the relative protein expression levels of senescence-associated cyclin p16 and p21. In addition, GAS reduced the proportion of SA ß-gal positive cells and the relative protein expression levels of p16 and p21, and increased the proliferation and migration ability of HUVECs. Meanwhile, GAS increased the expression of the anti-oxidative stress protein HO-1 and its nuclear expression level of Nrf2. The anti-senescence effect of GAS was blocked when HO-1 expression was inhibited by SnPPIX. Furthermore, absence of HO-1 abolished the effect of GAS on HUVEC proliferation and migration. In conclusion, GAS ameliorated H2 O2 -induced cellular senescence and enhanced cell proliferation and migration by enhancing Nrf2/HO-1 signalling in HUVECs. These findings of our study expanded the understanding of GAS pharmacology and suggested that GAS may offer a potential therapeutic agent for stroke.


Assuntos
Álcoois Benzílicos , Glucosídeos , Fator 2 Relacionado a NF-E2 , Acidente Vascular Cerebral , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Senescência Celular , Acidente Vascular Cerebral/metabolismo
7.
Inorg Chem ; 62(51): 21299-21308, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069807

RESUMO

Microflora within cancer cells plays a pivotal role in promoting metastasis of cancer. However, contemporary anticancer research often overlooks the potential benefits of combining anticancer and antibacterial agents. Consequently, a metal-organic framework Cu-Cip with cuproptosis and antibacterial properties was synthesized for cancer therapy. To enhance the anticancer effect of the material, Mn2+ was loaded into Cu-Cip, yielding Mn@Cu-Cip. The fabricated material was characterized using single-crystal X-ray diffraction, PXRD, and FT-IR. By interacting with overexpressed H2O2 to produce ROS and accumulating Cu ions in cancer cells, MOFs exhibited excellent anticancer performance. Moreover, the material displayed the function of damaging Staphylococcus aureus and Escherichia coli, revealing the admirable antibacterial properties of the material. In addition, the antibacterial ability could inhibit tumor cell migration. The Cu-based MOF revealed promising applications in the field of tumor treatment.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/química , Cristalografia por Raios X , Neoplasias/tratamento farmacológico
8.
BMC Genom Data ; 24(1): 78, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097945

RESUMO

OBJECTIVES: Castanopsis is the third largest genus in the Fagaceae family and is essentially tropical or subtropical in origin. The species in this genus are mainly canopy-dominant trees, and the key components of evergreen broadleaved forests play a crucial role in the maintenance of local biodiversity. Castanopsis chinensis, distributed from South China to Vietnam, is a representative species. It currently suffers from a high disturbance of human activity and climate change. Here, we present its assembled genome to facilitate its preliminary conservation and breeding on the genome level. DATA DESCRIPTION: The C. chinensis genome was assembled and annotated by Nanopore and MGI whole-genome sequencing and RNA-seq reads using leaf tissues. The assembly was 888,699,661 bp in length, consisting of 133 contigs and a contig N50 of 23,395,510 bp. A completeness assessment of the assembly with Benchmarking Universal Single-Copy Orthologs (BUSCO) indicated a score of 98.3%. Repetitive elements comprised 471,006,885 bp, accounting for 55.9% of the assembled sequences. A total of 51,406 genes that coded for 54,310 proteins were predicted. Multiple databases were used to functionally annotate the protein sequences.


Assuntos
Fagaceae , Melhoramento Vegetal , Humanos , Florestas , Genoma , Biodiversidade , Fagaceae/genética
9.
MedComm (2020) ; 4(6): e417, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937304

RESUMO

The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.

10.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958798

RESUMO

Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides' responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution.


Assuntos
Ácido Abscísico , Aizoaceae , Ácido Abscísico/metabolismo , Secas , Filogenia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Solução Salina , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solo
11.
Curr Issues Mol Biol ; 45(11): 8864-8881, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37998733

RESUMO

The long non-coding RNA MIR4435-2HG has been confirmed to play a crucial regulatory role in various types of tumors. As a novel type of non-coding RNA, MIR4435-2HG plays a key role in regulating the expression of tumor-related genes, interfering with cellular signaling pathways, and affecting tumor immune evasion. Its unique structure allows it to regulate the expression of various tumor-related genes through different pathways, participating in the regulation of tumor signaling pathways, such as regulating the expression of oncogenes and tumor suppressor genes, influencing the biological behaviors of proliferation, metastasis, and apoptosis in tumors. Numerous studies have found a high expression of MIR4435-2HG in various tumor tissues, closely related to the clinical pathological characteristics of tumors, such as staging, lymph node metastasis and prognosis. Some studies have discovered that MIR4435-2HG can regulate the sensitivity of tumor cells to chemotherapy drugs, affecting tumor cell drug resistance. This provides new insights into overcoming tumor drug resistance by regulating MIR4435-2HG. Therefore, studying its molecular mechanisms, expression regulation, and its relationship with the clinical features of tumors is of great significance for revealing the mechanisms of tumor occurrence and developing new therapeutic targets.

12.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003462

RESUMO

Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.


Assuntos
Antozoários , Cordia , Animais , Filogenia , Antozoários/genética , Genoma , Sequências Repetitivas de Ácido Nucleico , Anotação de Sequência Molecular , Cromossomos
13.
BMC Genom Data ; 24(1): 73, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017381

RESUMO

OBJECTIVES: Erythrophleum is a genus in the Fabaceae family. The genus contains only about 10 species, and it is best known for its hardwood and medical properties worldwide. Erythrophleum fordii Oliv. is the only species of this genus distributed in China. It has superior wood and can be used in folk medicine, which leads to its overexploitation in the wild. For its effective conservation and elucidation of the distinctive genetic traits of wood formation and medical components, we present its first genome assembly. DATA DESCRIPTION: This work generated ~ 160.8 Gb raw Nanopore whole genome sequencing (WGS) long reads, ~ 126.0 Gb raw MGI WGS short reads and ~ 29.0 Gb raw RNA-seq reads using E. fordii leaf tissues. The de novo assembly contained 864,825,911 bp in the E. fordii genome, with 59 contigs and a contig N50 of 30,830,834 bp. Benchmarking Universal Single-Copy Orthologs (BUSCO) revealed 98.7% completeness of the assembly. The assembly contained 471,006,885 bp (54.4%) repetitive sequences and 28,761 genes that coded for 33,803 proteins. The protein sequences were functionally annotated against multiple databases, facilitating comparative genomic analysis.


Assuntos
Fabaceae , Árvores , Anotação de Sequência Molecular , Genoma , China
14.
ACS Appl Mater Interfaces ; 15(38): 45035-45044, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704019

RESUMO

The steam content in the air electrode is one of the major factors determining the efficiency and stability of protonic ceramic electrolysis cells (PCECs). In this work, the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) current collection layer (CCL) film with unique finger-like pores was successfully prepared by the phase-inversion tape-casting technique (PT), which promoted the gas diffusion inside the electrode and effectively improved the stability of the single cell in high-humidity air. A screen-printed LSCF-BaCe0.7Zr0.1Y0.1Yb0.1O3 catalytic active layer (CAL) was also applied to match the thermal expansion coefficient (TEC) values and improve the interface combination. The electrochemical impedance spectroscopy (EIS) and distribution of relaxation time (DRT) studies of the symmetric cells showed that when the film was used to match different CALs as an air electrode, the gas diffusion inside the electrode was no longer restricted by the increasing steam content in air. The single cell exhibited a high electrolysis current density of 1 A cm-2 (1.25 V) at 650 °C; furthermore, no performance degradation was observed in this high current density when electrolyzed in air with 40 and 60% humidity for more than 250 h. These results present a simplified and economical scheme to develop air electrodes with high stability in wet air with a high steam content.

15.
Chin Med J (Engl) ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620294

RESUMO

BACKGROUND: Although overnight fasting is recommended prior to endoscopic retrograde cholangiopancreatography (ERCP), the benefits and safety of high-carbohydrate fluid diet (CFD) intake 2 h before ERCP remain unclear. This study aimed to analyze whether high-CFD intake 2 h before ERCP can be safe and accelerate patients' recovery. METHODS: This prospective, multicenter, randomized controlled trial involved 15 tertiary ERCP centers. A total of 1330 patients were randomized into CFD group (n = 665) and fasting group (n = 665). The CFD group received 400 mL of maltodextrin orally 2 h before ERCP, while the control group abstained from food/water overnight (>6 h) before ERCP. All ERCP procedures were performed using deep sedation with intravenous propofol. The investigators were blinded but not the patients. The primary outcomes included postoperative fatigue and abdominal pain score, and the secondary outcomes included complications and changes in metabolic indicators. The outcomes were analyzed according to a modified intention-to-treat principle. RESULTS: The post-ERCP fatigue scores were significantly lower at 4 h (4.1 ± 2.6 vs. 4.8 ± 2.8, t = 4.23, P <0.001) and 20 h (2.4 ± 2.1 vs. 3.4 ± 2.4, t = 7.94, P <0.001) in the CFD group, with least-squares mean differences of 0.48 (95% confidence interval [CI]: 0.26-0.71, P <0.001) and 0.76 (95% CI: 0.57-0.95, P <0.001), respectively. The 4-h pain scores (2.1 ± 1.7 vs. 2.2 ± 1.7, t = 2.60, P = 0.009, with a least-squares mean difference of 0.21 [95% CI: 0.05-0.37]) and positive urine ketone levels (7.7% [39/509] vs. 15.4% [82/533], χ2 = 15.13, P <0.001) were lower in the CFD group. The CFD group had significantly less cholangitis (2.1% [13/634] vs. 4.0% [26/658], χ2 = 3.99, P = 0.046) but not pancreatitis (5.5% [35/634] vs. 6.5% [43/658], χ2 = 0.59, P = 0.444). Subgroup analysis revealed that CFD reduced the incidence of complications in patients with native papilla (odds ratio [OR]: 0.61, 95% CI: 0.39-0.95, P = 0.028) in the multivariable models. CONCLUSION: Ingesting 400 mL of CFD 2 h before ERCP is safe, with a reduction in post-ERCP fatigue, abdominal pain, and cholangitis during recovery. TRAIL REGISTRATION: ClinicalTrials.gov, No. NCT03075280.

16.
Front Oncol ; 13: 1185093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409257

RESUMO

Pancreatic cancer is a strongly malignant gastrointestinal carcinoma characterized by late detection, high mortality rates, poor patient prognosis and lack of effective treatments. Consequently, there is an urgent need to identify novel therapeutic strategies for this disease. Pancreatic stellate cells, which constitute a significant component of the mesenchymal cellular layer within the pancreatic tumor microenvironment, play a pivotal role in modulating this environment through their interactions with pancreatic cancer cells. This paper reviews the mechanisms by which pancreatic stellate cells inhibit antitumor immune responses and promote cancer progression. We also discuss preclinical studies focusing on these cells, with the goal of providing some theoretical references for the development of new therapeutic approaches for pancreatic cancer.

17.
Plant Physiol Biochem ; 200: 107786, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257408

RESUMO

Cysteine-rich transmembrane module (CYSTM) proteins constitute small molecular protein families and have been identified across eukaryotes, including yeast, humans, and several plant species. Plant CYSTMs play vital roles in growth regulation, development, phytohormone signal transduction, pathogen defense, environmental stress response, and even heavy metal binding and detoxification. Canavalia rosea (Sw.) DC is a perennial halophyte with great semi-arid and saline-alkali tolerance. In this study, the CrCYSTM family including 10 members were identified in the C. rosea genome, with the purpose of clarifying the possible roles of CrCYSTMs in C. rosea plants development and stress resistance. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, and putative cis-acting elements in promoter regions were predicted and analyzed. Transcriptome analysis combined with quantitative reverse transcription PCR showed that different CrCYSTM members exhibited varied expression patterns in different tissues and under different abiotic stress challenges. In addition, several CrCYSTMs were cloned and functionally characterized for their roles in abiotic stress tolerance with yeast expression system. Overall, these findings provide a foundation for functionally characterizing plant CYSTMs to unravel their possible roles in the adaptation of C. rosea to tropical coral reefs. Our results also lay the foundation for further research on the roles of plant CYSTM genes in abiotic stress signaling, especially for heavy metal detoxification.


Assuntos
Canavalia , Cisteína , Humanos , Cisteína/metabolismo , Canavalia/genética , Canavalia/metabolismo , Saccharomyces cerevisiae/metabolismo , Filogenia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Família Multigênica
18.
DNA Res ; 30(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37228100

RESUMO

Plantago is a major genus belonging to the Plantaginaceae family and is used in herbal medicine, functional food, and pastures. Several Plantago species are also characterized by their global distribution, but the mechanism underpinning this is not known. Here, we present a high-quality, chromosome-level genome assembly of Plantago major L., a species of Plantago, by incorporating Oxford Nanopore sequencing and Hi-C technologies. The genome assembly size was approximately 671.27 Mb with a contig N50 length of 31.30 Mb. 31,654 protein-coding genes were identified from the genome. Evolutionary analysis showed that P. major diverged from other Lamiales species at ~62.18 Mya and experienced two rounds of WGD events. Notably, many gene families related to plant acclimation and adaptation expanded. We also found that many polyphenol biosynthesis genes showed high expression patterns in roots. Some amino acid biosynthesis genes, such as those involved in histidine synthesis, were highly induced under metal (Ni) stress that led to the accumulation of corresponding metabolites. These results suggest persuasive arguments for the global distribution of P. major through multiscale analysis. Decoding the P. major genome provides a valuable genomic resource for research on dissecting biological function, molecular evolution, taxonomy, and breeding.


Assuntos
Plantaginaceae , Plantago , Plantago/genética , Plantaginaceae/genética , Melhoramento Vegetal , Cromossomos , Aclimatação , Solo , Filogenia
19.
BMC Genom Data ; 24(1): 21, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060047

RESUMO

OBJECTIVES: Nepenthes belongs to the monotypic family Nepenthaceae, one of the largest carnivorous plant families. Nepenthes species show impressive adaptive radiation and suffer from being overexploited in nature. Nepenthes mirabilis is the most widely distributed species and the only Nepenthes species that is naturally distributed within China. Herein, we reported the genome and transcriptome assemblies of N. mirabilis. The assemblies will be useful resources for comparative genomics, to understand the adaptation and conservation of carnivorous species. DATA DESCRIPTION: This work produced ~ 139.5 Gb N. mirabilis whole genome sequencing reads using leaf tissues, and ~ 21.7 Gb and ~ 27.9 Gb of raw RNA-seq reads for its leaves and flowers, respectively. Transcriptome assembly obtained 339,802 transcripts, in which 79,758 open reading frames (ORFs) were identified. Function analysis indicated that these ORFs were mainly associated with proteolysis and DNA integration. The assembled genome was 691,409,685 bp with 159,555 contigs/scaffolds and an N50 of 10,307 bp. The BUSCO assessment of the assembled genome and transcriptome indicated 91.1% and 93.7% completeness, respectively. A total of 42,961 genes were predicted in the genome identified, coding for 45,461 proteins. The predicted genes were annotated using multiple databases, facilitating future functional analyses of them. This is the first genome report on the Nepenthaceae family.


Assuntos
Mirabilis , Transcriptoma , Transcriptoma/genética , Planta Carnívora/genética , Mirabilis/genética , Genoma
20.
World Neurosurg ; 171: e738-e744, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608789

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) is the most common type of hemorrhage in moyamoya disease (MMD) with intracerebral hemorrhage (ICH), but the risk factors affecting the short-term prognosis of MMD with IVH in adults are still unclear. METHODS: We retrospectively analyzed patients of MMD with IVH between January 1, 2018 and January 31, 2020 in the First Affiliated Hospital of Zhengzhou University. According to the modified Rankin Scale (mRS) score at 3 months after discharge, the patients were divided into mRS score ≤2 (good prognosis) group and mRS score >2 (poor prognosis) groups. Univariate and multivariate logistics regression analysis was used to analyze the risk factors affecting the short-term prognosis of adult MMD with IVH. RESULTS: Univariable analyses showed that patients in the poor prognosis group had a significantly older age of onset (48.48 ± 8.34 vs. 43.74 ± 5.44 years; P = 0.002), a higher percentage of hypertension (57.97% vs. 33.33%; P = 0.014), a higher percentage of tracheotomy (23.19% vs. 2.56%; P = 0.005), a lower Glasgow Coma Scale (GCS) score (7.90 ± 3.58 vs. 11.19 ± 2.56; P = 0.000), a higher Graeb score (7.46 ± 4.04 vs. 5.23 ± 1.93; P = 0.002), and treatment methods (P = 0.000). Multiple logistic regression analysis showed that the lower GCS score (odds ratio [OR], 1.761; P = 0.001) and higher Graeb score (OR, 1.767; P = 0.002) were independently associated with the poor prognosis of MMD with IVH, and surgery treatment (OR, 0.032; P = 0.000) was independently related to the good prognosis of MMD with IVH. CONCLUSIONS: Among patients with MMD with IVH, the lower GCS score and higher Graeb score are independent risk factors for poor prognosis, whereas in patients with MMD with IVH, surgery treatment acts as a protective factor.


Assuntos
Doença de Moyamoya , Adulto , Humanos , Estudos Retrospectivos , Hemorragia Cerebral/cirurgia , Prognóstico , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...